¿Es un espacio vectorial lo mismo que un campo vectorial? Si no, ¿cuál es la diferencia entre ellos?


Respuesta 1:

No.

AvectorspaceoverafieldFisaset[math]V[/math],togetherwithtwooperations,commonlyknownasvectoraddition(whichtakestwoelementsof[math]V[/math]andoutputsanotherelementof[math]V[/math])andscalarmultiplication(whichtakesanelementof[math]F[/math]andanelementof[math]V[/math]andoutputsanotherelementof[math]V[/math]),suchthat,if[math]u,v,wV[/math]and[math]a,bF[/math]:A vector space over a field F is a set [math]V[/math], together with two operations, commonly known as vector addition (which takes two elements of [math]V[/math] and outputs another element of [math]V[/math]) and scalar multiplication (which takes an element of [math]F[/math] and an element of [math]V[/math] and outputs another element of [math]V[/math]), such that, if [math]\textbf{u},\textbf{v},\textbf{w}\in V[/math] and [math]a,b\in F[/math]:

  1. u+v=v+u[math]u+(v+w)=(u+v)+w[/math]Thereexistssomevector[math]0[/math]suchthat,forevery[math]v[/math],[math]v+0=v[/math]Foreveryvector[math]v[/math],thereexistssomevector[math]v[/math]suchthat[math]v+(v)=0[/math][math]a(bv)=(ab)v[/math]Foreveryvector[math]v[/math],[math]1Fv=v[/math],where[math]1F[/math]isthemultiplicativeidentityin[math]F[/math][math]a(u+v)=au+av[/math][math](a+b)v=av+bv[/math]\textbf{u}+\textbf{v} = \textbf{v}+\textbf{u}[math]\textbf{u}+(\textbf{v}+\textbf{w}) = (\textbf{u}+\textbf{v})+\textbf{w}[/math]There exists some vector [math]\textbf{0}[/math] such that, for every [math]\textbf{v}[/math], [math]\textbf{v}+\textbf{0} = \textbf{v}[/math]For every vector [math]\textbf{v}[/math], there exists some vector [math]-\textbf{v}[/math] such that [math]\textbf{v}+(-\textbf{v}) = \textbf{0}[/math][math]a(b\textbf{v}) = (ab)\textbf{v}[/math]For every vector [math]\textbf{v}[/math], [math]1_F\textbf{v} = \textbf{v}[/math], where [math]1_F[/math] is the multiplicative identity in [math]F[/math][math]a(\textbf{u}+\textbf{v}) = a\textbf{u}+a\textbf{v}[/math][math](a+b)\textbf{v} = a\textbf{v}+b\textbf{v}[/math]

Avectorfieldisafunctionthattakespointsinsomemanifoldasinputsandreturnstangentvectorstothemanifoldasoutputs.Alotofthetime,themanifoldwillbeRn,butitdoesnthavetobe.Itcanbeanyarbitrarymanifold.(Initially,Ihadsaidthatavectorfieldwasamapbetweenvectorspaces,but,aspointedoutbyRuskoRuskov,thisisnotcorrect.)A vector field is a function that takes points in some manifold as inputs and returns tangent vectors to the manifold as outputs. A lot of the time, the manifold will be \mathbb{R}^n, but it doesn’t have to be. It can be any arbitrary manifold. (Initially, I had said that a vector field was a map between vector spaces, but, as pointed out by Rusko Ruskov, this is not correct.)


Respuesta 2:

El espacio vectorial es un conjunto de objetos que se comportan como vectores. Similar al espacio de eventos: conjunto de eventos que pueden suceder.

El campo vectorial es más como una función de un espacio vectorial a otro espacio vectorial.

Por lo general, un campo vectorial también es diferenciable o continuo. Lo cual requeriría una estructura adicional que se impondría para definir qué es derivado y qué se entiende por continuo.